Mahasiswa/Alumni Universitas Negeri Yogyakarta08 Februari 2022 1542Halo Nadya, kakak bantu jawab ya Jawaban A Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup Pembahasan Diketahui bahwa m dan n merupakan bilangan bulat positif. Pertanyaannya apakah m - n kelipatan 5? Pernyataan 1 m - n kelipatan 10, jika suatu bilangan kelipatan 10 maka bilangan tersebut juga kelipatan 2 dan kelipatan 5. Pernyataan 2 n kelipatan 5, untuk menjawab m - n juga kelipatan 5 sangatlah tergantung pada nilai m. Dengan demikian, jawaban yang benar adalah opsi A berupa pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Semoga membantu ya
Misalkansuatu pecahan n/d, di mana n dan d adalah bilangan bulat positif. Jika nDua buah bilangan bulat a dan b dikatakan relatif prima jika PBBa, b = 1. Contoh i 20 dan 3 relatif prima sebab PBB20, 3 = 1ii 7 dan 11 relatif prima karena PBB7, 11 = 1iii 20 dan 5 tidak relatif prima sebab PBB20, 5 = 5 ≠ 1 Dikaitkan dengan kombinasi linier, jika a dan b relatif prima, maka terdapat bilangan bulat m dan n sedemikian sehingga ma + nb = 1 Contoh Bilangan 20 dan 3 adalah relatif prima karena PBB20, 3 = 1 Atau dapat ditulis 2 20 + –13 3 = 1 m = 2, n = –13 Akan tetapi, 20 dan 5 tidak relatif prima karena PBB20,5 = 5 ≠ 1 sehingga 20 dan 5 tidak dapat dinyatakan dalam m 20 + n 5 = 1 Materi Lengkap Silakan baca juga beberapa artikel menarik kami tentang Teori Bilangan, daftar lengkapnya adalah sebagai berikut. Tonton juga video pilihan dari kami berikut ini
ContohSoal : 1. Buktikan bahwa jika a|b, maka a|mb untuk setiap bilangan bulat m 2. Buktikan bahwa apabila a|b dan c|d, maka ac|bd 3. Buktikan bahwa hasil kali dua bilangan bulat berurutan selalu terbagi oleh 2 4. Hasil kali tiga bilangan bulat berurutan selalu terbagi oleh 3. Buktikanlah! 5.
PembahasanJawaban yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai 0 p ′ = 0 Perhatikan perhitungan berikut ini! 3 m − n n ​ = = ​ 60 3 m − 60 ​ Substitusi n pada persamaan , diperoleh p ​ = = ​ m 2 + n 2 m 2 + 3 m − 60 2 ​ Nilai minimum tercapai saat p ′ 2 m + 2 ⋅ 3 m − 60 ⋅ 3 2 m + 6 3 m − 60 2 m + 18 m − 360 20 m − 360 20 m m ​ = = = = = = = ​ 0 0 0 0 0 360 18 ​ Sehingga, nilai minium dari yaitu p ​ = = = = = = ​ m 2 + 3 m − 60 1 8 2 + 3 18 − 60 2 324 + 54 − 60 2 324 + − 6 2 324 + 36 360 ​ Oleh karena itu, jawaban yang benar adalah yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai Perhatikan perhitungan berikut ini! Substitusi pada persamaan , diperoleh Nilai minimum tercapai saat Sehingga, nilai minium dari yaitu Oleh karena itu, jawaban yang benar adalah C.
. 424492832592433298315